Gvirgvini Ltd.

The Results of Engineering and Geological Study in Bakuriani, on Didveli Area Ordered by Mountain Resorts Development Ltd.

Engineering and Geological Conclusion

The Director of Gvirgvini Ltd.

/Ramaz Chikovani/

Tbilisi 2014

Content

1.	Introduction	
2.	Brief description of natural conditions on the site of works	
3.	Methodology and volume of conducted works	
4.	Engineering and geological conditions on the study area	
5.	Conclusion and recommendations	
6.	Reference list	

Annexes

1.	Graphical Annexes	
1.1.	The plan of the study area with mining waste and section lines SF 1:1000	1 pg.
1.2.	. Engineering and geological sections I-I ¹	1 pg.
1.3.	Engineering and geological sections II-II ¹	1 pg.
1.4.	Conventional references	1 pg.
1.5.	Engineering and geological sections of the wells, N $^{0}1$ -6	12 pg.
1.6.	Engineering and geological sections of the pares №1÷5	5 pg.

2.	Textual Annexes	
2.1.	Technical order	1 pg.
2.2.	Reporting indicators of physical and mechanical indicators of the soil	1 pg.
2.3.	Results of laboratory study of the soil samples – the conclusion of LEPL	10 pg.
	Levan Samkharauli National Forensic Bureau	
2.4.	Results of laboratory study of the soil samples – The results of the laboratory	11 pg.
	study performed by GeoEngineering	
2.5.	Results of laboratory study of filtration properties of the soil	1 pg.
2.6.	The results of statistical processing of the laboratory study materials	
	regarding the quake characteristics	1 pg.

1. Introduction

Engineering and geological studies were conducted in December and January of 2014-2015 in order to study the nearby territory of lower Bakuriani, on the area of Didveli, on the basis of the agreement concluded by "Mountain Resorts Development" Ltd. and "Gvirgvini" Ltd.

The works were conducted in accordance with the technical order given by the customer (see annex 2.1).

Under the agreement the contractor shall ensure expertise of the documents of engineering and geological studies (the Engineering and Geological Conclusion) by LEPL Levan Samkharauli National Forensic Bureau and it is emphasized that the purpose of the expertise is to determine compliance of the conducted works with the technical order.

The engineering and geological studies included field, laboratory studies and cameralistic processing stages.

The director of "Gvirgvini" Ltd. - Ramaz Chikovani, his deputy M. Kipiani, Engineer-Geologists: A. Lobjanidze, E. Katsadze, T. Jajanidze, V. Ivanov and L. Kobesashvili carried out the works.

2. Brief description of natural conditions on the site of works

The study area is located within the north slope of Adjara-Trialeti mountain ridge. The climate is transitional from moderately humid to continental climate; winters are cold and snowy, the thickness of snow is approximately 64 cm. Snow is maintained stable from the early December to the end of March. Summer is quite long. Average temperature in January is -7.2 °, in August - 15°. Average annual precipitation is 734 mm.

The hydrographic network of the territory consists of Gujareti Water from the north and River Ktsia from the south, which flow in the opposite longitudinal directions with their small and medium tributaries.

According to geomorphology, the area belongs to the South Georgia volcanic mountainous zone and peripheral longitudinal mountain ridge zones of the Tori-Gujareti volcanic area of Trialeti Ridge region, which includes the cave between the volcanic flows of Tsikhisjvari (main) and Gvirgvini Ridge. These two flows (ridges) of the most recent volcanism join each other at the mountain Jamjama.

River Gujaretistskali flows in longitudinal direction, while Borjomula flows in meridian direction.

General nature of relief is technogenic and erosion which is complicated with lava flows, plateaus and other volcanic forms.

Geologically, the territory consists of upper cretaceous porphyrite and quartzporphyrite, albitophyre and their tuffs and tuff-breccia and tuff-sandstones, lava flow layers of Paleogenic andesite, tuff-sandstones, coarse grained andesite tuffs and dislocated mudstone.

Tectonics of the region is the result of its location within the Lesser Caucasus megaanticlinorium region, which is the precondition for high seismic activity.

According to the hydrological zoning map, the studied area belongs to the crevice water area of Akhaltsikhe artesian basin within Adjara-Trialeti channelling system region.

According to the engineering and geological zoning map, the studied area is located within the area of cretaceous and Paleogenic volcanogenic sediments, rocky and partiallyrocky soil of the Adjara-Trialeti folded system region. It should be noted, that many types of geo-dynamic processes are widely characteristic to this area, which must be taken into consideration when designing projects of specific engineering constructions.

3. Methodology and volume of conducted works

According to the technical order, 6 wells must have been bored at the site, with the depth of 30 linear meters each, or totally 180.0 linear meters, by taking the samples and pares with the depth of approximately 5.0-6.0 meters or up to basic soil layers, must have been made and the samples taken.

Physical and mechanical properties of the soil (of dispersive layers) must have been studied at the laboratory in accordance with the international standard requirements; the following must have been determined: 1) granulometric content, 2) humidity, 3) porosity, 4) filtration, 5) compression, 6) direct cutting and 7) Atterberg limits. Amount of each definition must have been 5.

The technical order was accomplished as follows: complete core and soil samples were taken by mechanical-linear method. 6 wells were bored with the diameter of 127 mm-76 mm, with the depth of 30.0 meters each and 20 samples of soil were taken.

Five pares were made with the depth of 5.0 linear meters each, and in total with the depth of 25.0 linear meters and 11 samples of the disturbed structure of soil were taken. Due to high content of coarse debris insertions the samples of monolithic rocky stratum were not taken from the pares.

As the upper part of the studied section is directly connected to the project of engineering construction, main part of the laboratory studies were conducted on the samples taken from the pares (see annex 2.3). This was also caused by the fact, that applied western method allows to put the samples, with disturbed structure, into their natural load conditions and based on them to determine the values of physical properties and of section parameters.

This type of experiments requires significant amount of samples to the extent which is allowed by the pares, while in case of wells it was not possible to conduct such experiments. (See annex 2.4).

The laboratory of "GeoEngineering" has established the density of mineral part of the soil on the basis of the percentage correlation of loamy soil and coarse debris insertions, using the existing fund materials, which amounted to 2.69 linear cm³ and 2.70 linear cm³ (see annexes 2.2, EGE 2 and EGE 3).

Filtration properties were studied at the laboratory of JSC "Saktskalproekti".

The results of field and laboratory studies were processed in accordance with current standards and normative requirements and Engineering and Geological Elements (EGE) were distinguished.

Numbers were assigned according to the consistency and the increase in the amount of coarse debris insertions.

In all, 8 Engineering and Geological Elements were distinguished.

On the basis of laboratory determinations 3 EGEs were distinguished: 2, 3 and 7 and the quake properties of EGE 7 were described. The other layers were distinguished according to the field description and the values of mechanical properties were determined in accordance with the current normative recommendations. Only in one case (EGE 7) it was possible to determine the values of quake properties as a result of processing laboratory study materials by a statistical method (see annexes 2.2 and 2.6).

Also, it is notable that as the structure of clay filler is low in the process of experiment on disturbed structure samples, the results of this method must be slightly lower than actual. We assume that due to the above, the values given in brackets for quake properties of EGE 7 are slightly lower than those, recommended by technical normative standards.

Study of underground waters for engineering and geological purposes was not considered by the technical order.

4. Engineering and geological conditions on the study area

The study area is located between lower Bakuriani, Tskhratskaro Ridge and the River Ktsia and it is a hill with a slope and it has almost quadrangular shape in the bottom, at the plain territory; the total area of the site is 3.5 hectares (see annex 1.1). The surface landmarks range between 2099-2140 meters; the inclination goes from south-west to north-east and

achieves its maximum at the central part of the slope (20-25°), while the north and north-east end is a plain territory (see annexes 1.1, 1.2 and 1.3).

The surface is covered by the soil layer of 0.25-0.4 meters thickness.

As a result of cameralistic processing of field and laboratory study materials 8 EGEs were distinguished up to the depth of 30.0 meters according to current normative standard requirements (see annex 2.2): (1) the soil layer edQ_{IV} - brown loam, with high plasticity, with grit and gravel content of up to 15% and with the plant roots of up to 35%; (2) brown loam, semi-solid, with grit and gravel content of up to 40%; (3) greenish loam, solid, with grit and gravel content of up to 35%; (4) greyish-brown loam, semi-solid, with grit and gravel content of up to 50%; (5) brownish-grey loam, semi-solid, with grit and gravel insertions of up to 40% and $0.2\div0.5$ m thick middle-layers (percentage correlation in the section - 75%-25%); (6) light and dark brown, semi-solid, the sequence of the loam with grit insertions of up to 40% (0.1÷0.9) and 0.1÷0.2 meters thick grit layers (percentage correlation in the section - 60%-40%); (7) gravel ground with hard loam filler of up to 30%; (8) gravel ground.

Within the scope of the study area, mined up to 30.0 m. depth, the descending section is as follows: the whole territory is covered with 0.25-0.4 m. thick soil layer (EGE 1), under which the gravel layers of $3.75 \div 4.6$ m. capacity and with solid loam filler of up to 30% are situated (EGE 7). Their capacity is slightly increasing to the bottom of the slope and they are also detected in the well N°2, within the depth interval of 9.1-14.0 meters. They have the following properties: density value of 1.83 l/m³, porosity coefficient - 0.631, reported resistance of the ground - $4.5 \cdot 10^5$ Pa.

Grit soils (EGE 8) are spread under the EGE 7, in the higher part of the slope (well Nº6). Here the total capacity of its layers is 6.25 m. It may also be observed in the centre of the studied territory (well Nº4) directly under the soil layer, where it has lenses with 0.7 m. capacity. In other cases they participate in the sequence of layers, where they occupy various parts of the layers (EGE 5 and EGE 6). The value of reported resistance of the soil is 6.0-10⁵ Pa in this case.

The following layer of the territory is EGE 6 – the sequence of the layers with fillers of loam with semi-solid coarse debris insertions and with loam fillers (similar to the layers of EGE 2 and EGE 8), percentage correlation in the section is up to 60%-40%. These layers are

situated at 4.9-12.7 meters intervals in the form of layers with 1.6-3.7 meters capacity and at the depth of up to 22.2-27.5 m. in well N $^{\circ}$ 5.

The value of reported resistance for these layers is 3.2-10⁵ Pa.

In the upper part of the studied area under EGE 6, 4 layers of EGE 2 (brown loam, semi-solid, with the grit and gravel content) with up to 1.0-1.5 m. capacity are situated within various depth interval of 12.7-30.0 m. depth. They are mostly spread in the lower, plain part of the territory, where their capacity is within the range of 3.0-9.6 m. (see annexes 1.2 and 1.3). The density of these layers is 1.99 l/cm³, their porosity coefficient is 0.620 and the reported resistance of the soil is 2.4·10⁵ Pa.

EGE 5 (brownish-grey loam, semi-solid, with grit and gravel insertions of up to 40% and with gravel middle-layers with loam fillers of up to 30% (the percentage correlation in the section is 75%-25%)) is dominant in the section of the higher part of the territory.

The value of reported resistance of the soil is $2.9 \cdot 10^5$ Pa.

Three layers of EGE 4 (greyish-brown loam, semi-solid, with grit and gravel content of up to 50%) with the capacity of 1.8-3.4 m. are situated in the central part of the studied area (well Nº4) at the depth of up to 19.1-30.0 m. These layers are more dominated in the lower part of the territory (see annexes 1.2 and 1.3).

The value of their reported resistance of the soil is $2.8 \cdot 10^5$ Pa.

The 30.0 m. deep section is ended with the EGE 3 soils layers (dark greenish loam, solid, with grit and gravel content of up 35%), which are situated from the depth of 17.0-24.2 meters;

Their properties are as follows: the value of density - 2.03 l/cm^3 , the porosity coefficient is 0.519 and the reported resistance of the soil is $2.7 \cdot 10^5 \text{ Pa}$.

It is notable, that due to the amount of laboratory determinations strictly required by the technical order, it was not possible to determine physical and mechanical values for all layers, while it was possible to apply a statistical method only in one case during determining quake properties of the EGE 7 (see annex 2.6).

The values of properties of layers 4, 5, 6 and 8 were determined on the basis of description of the core taken from the wells.

The underground waters were opened in the lower, plain area of the territory within the depth interval of 13.0-15.0 m. Their chemical composition was not studied; according to the fund materials the aggression of underground waters is not detected.

It is notable, that the studied area is completely located within the hills of deluvialproluvial genesis.

It is observed, that the strong mudflow coming from the region of Oshora and Bakurianistskali sources has filled the negative forms of relatively lower areas of the relief situated below it, including the lake located near the bottom of the hill slope of the studied territory, which is identified by the loamy soils containing gallic and organic signs characteristic from the depth of 14.3-24.2 m. in wells Nº1, 2 and 3 (see annexes 1.1, 1.2 and 1.3).

In the part of the south slope of the Trialeti Ridge, within which the discussed area is located, middle-Eocene lava flow layers are open; due to this this is the zone of intensive physical erosion area and the basic zone of collection of inert coarse debris materials, which signals possible danger of mudflow event.

As the studied territory is located within the deluvial-proluvial body, it has achieved the natural balance relevant to its current condition as a result of geo-dynamic processes, and is characterized with stability.

Unforeseen technogeneous interruption may result in activation of geo-dynamic processes, which will put the construction project, as well as the facilities located below the object, in danger.

5. Conclusions and Recommendations

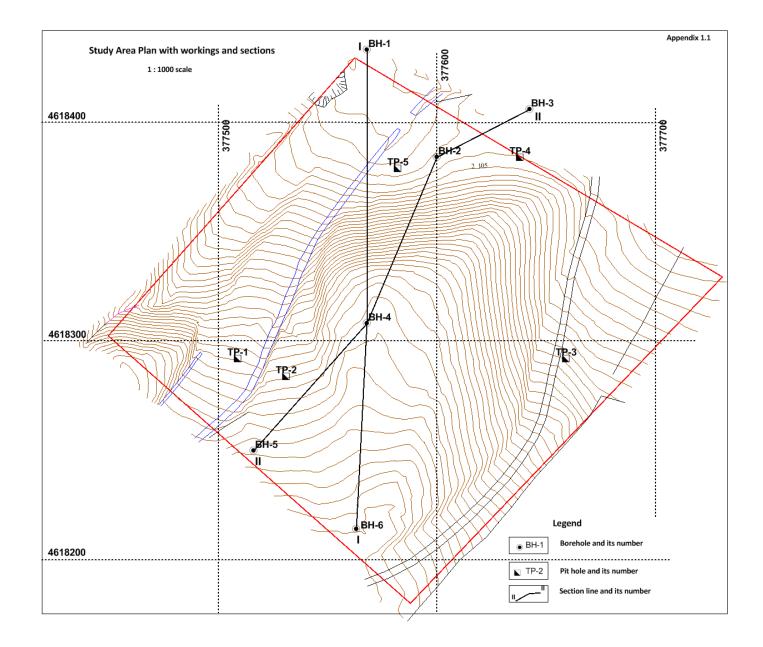
- According to the engineering and geological zoning map the study area is located within area of cretaceous and Paleogenic volcanogenic sediments, rocky and partiallyrocky soil of the Adjara-Trialeti folded system region.
- According to complexity of engineering and geological conditions (BNR 1.02.07-87) the study area belongs to the second, middle category.
- 3. On the basis of cameralistic processing of conducted field and laboratory study materials 8 Engineering Geological Elements (EGE) were distinguished in compliance with current standards and requirements (see annex 2.2).
- 4. The numbers were assigned to the EGEs according to their consistency and the increase in the amount of coarse debris insertions.
- 5. All Engineering Geological Elements (EGE) are of deluvial-proluvial genesis and except for the one (EGE 8, gravel ground) they represent the mixture of loamy mass and coarse debris insertions with various percentages (see annex 2.2).
- 6. The value of reported resistance of the soil fluctuates for the above mentioned layers within the range of 2.4-4.5 10⁵ Pa, while it amounts to 6.0 10⁵ Pa for the EGE 8 (see annexe 2.2).

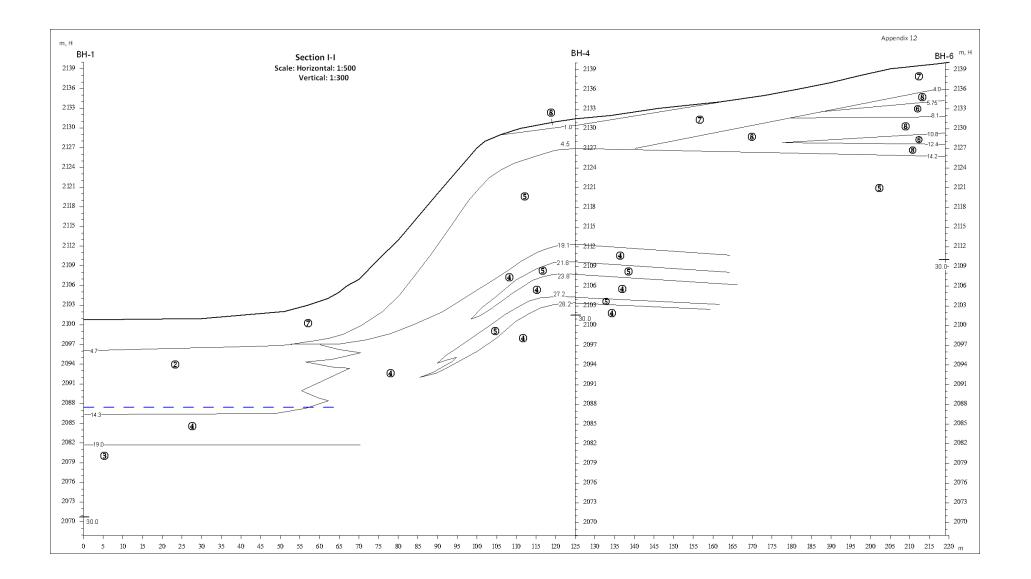
Also, it must be noted that under the technical order, due to the volume of laboratory studies (in 5 complexes of determinations) laboratory study of physical-mechanical properties of all the layers were not possible to conduct.

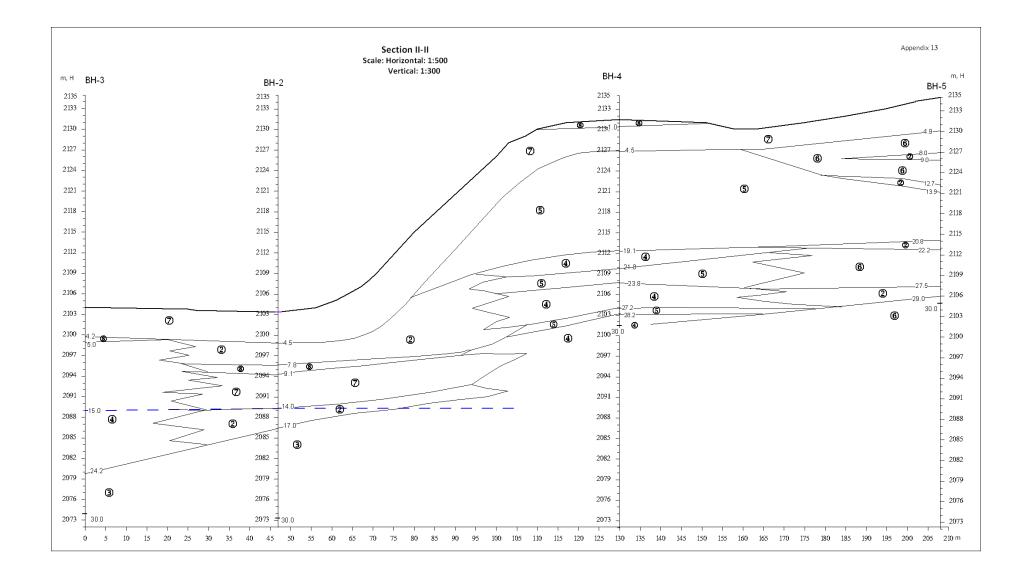
- 7. Under the above-stated loads (see annex 2.2), the sustainability of the construction project would be ensured by the EGEs according to high probability discussed by us, however two factors must be taken into consideration: the type of the construction and the genesis of the study area.
- 8. The necessary requirement under the current normative regulations during designing hydro-technical construction projects is to study physical-mechanical properties in the conditions of complete water-saturation of the soil, and to conduct field-experimental works in order to study filtration properties.

- 9. The studied area is a part of the hill of deluvial-proluvial genesis, which is in the condition of natural balance relevant to the type and dimensions of its geological composition as a result of geo-dynamic and erosion processes.
- 10. The above is the basis for its stable condition and without comprehensively substantiated technogenic interruption negative geo-dynamic processes, such as erosion and landslide, may develop.
- 11. The studied area is located in valley of the trapezoidal, mudflow nature and mudflow processes are likely to develop in the future from the north-west side.
- 12. Due to all the above-mentioned, it is advisable to conduct quantitative evaluation of sustainability of the study hill slope, as well as to evaluate possible impact of the geodynamic dangers, existing in the region, to the construction project.
- 13. During the works the underground waters were detected at the bottom of the studied hill within the interval of the depth of 13.0 ÷ 15.0 m; according to the data from the fund materials aggression of underground waters is not detected in the study area.
- 14. According to the seismic zoning map of Georgia the study territory belongs to the zone of 8 ball seismic hazard (PN 01.01-09).

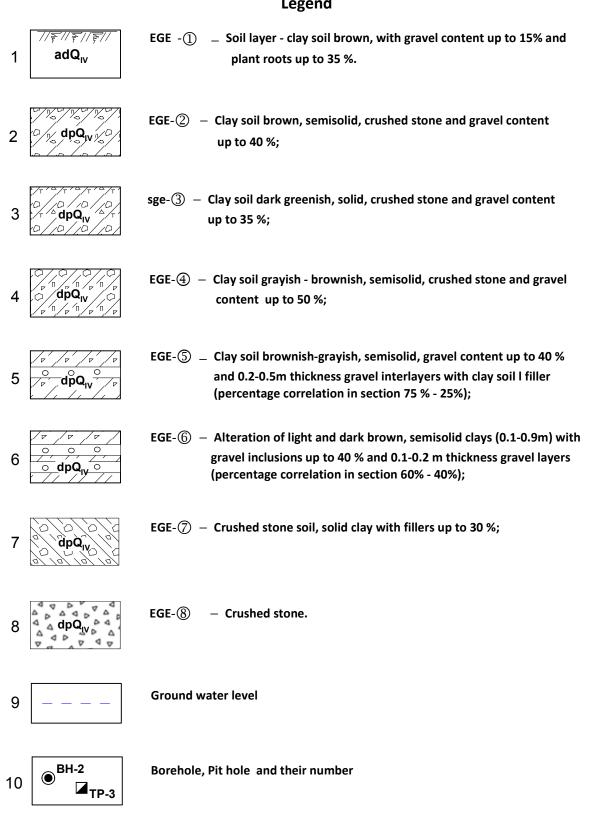
Engineer-Geologists:


E. Katsadze R. Chikovani A. Lobjanidze


6. Reference List:


- 1. BS 1377 Part 2 1990:3.2;
- 2. BS 1377 Part 2 1990:4.3/S;
- 3. BS 1377 Part 2 1990:9.3;
- 4. BS 1377 Part 7: Clause 5 (procedure 5 5 5);
- 5. GOST 25100-82 Soil Classification;
- 6. Building Norms and Regulations (BNR) 1.02.07-87 "Engineering Studies for Construction Works";
- 7. BNR 2.02.01-83 "Foundation of Buildings and Constructions";
- "Manual for the Design of Foundations of Buildings and Constructions" (BNR 2.02.01-83);
- "Method of Evaluating Strength and Compression of Round-clastic soil with Silty and Clay Compressor and of Silty and Clay Soils with Round-clastic Insertions" M. 1989;
- 10. BNR 01.01.-09 "Seismic Resistant Construction";
- 11. I. M. Buachidze "Hydrogeology of the Soviet Union", T. X-M 1970;
- 12. I. M. Buachidze, K. I. Janjghava, M. V. Turchinov "Engineering Geology of the Soviet Union" T-VIII, M.1978.

Appendix


1. Graphical appendix

Legend

	ბიექტი: პ ject: Baku			ველი					დანართი 1.5-1 Appendix 1.5-1
U	Jeul Dakl	11a111-DI			ჭაბურღ Borehol		№ 1		
ln ହ	აწყების itial Date: ამთავრეპ nal Date:	0.9.12.20 ნის თარ	14 നെള്ന: 10		x=377 Y=461 d=90mm d=76mm	8433 _0.0-4 _4.9-3	30.0m	Ēxcava გრუნ Groui	ამუშევრის პირის ნიშნული – მ ation Level_ м ტის წყლის დონე: გამოჩენა –13.5მ დამყარება – 13.0მ nd water Level: _ Flow level- 13.5 м Stable level - 13.0 м
	Nº	ების er (m)	(9)	ექსი	აითო- Df		ნიმუში Samplii	-	
o No No No No	საიხჟინრო-გეოლოგიუ- რი კლემენტი (სგე) Engineering Geological Elements	შრის საგების განლაგების სიღრმე, (მ) , Depth of Basement Layer (m)	შრის სიმძლავრე, (მ) Layer Thick (m)	გეოლოგიური ინდექსი Geological Index	გამონამუშევრის ლითო- ლოგიური ჭრილი Lithological Section of Excavation	ნიმუშის ნომერი Sample Number	ნიმუშის სახეობა Sample Type	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil
1		0.4	0.4	$\text{adQ}_{\rm IV}$					Soil layer – clay soil brown, with gravel content up to 15% and plant roots up
2	Ø	1- 2- 3- 4- 4.7	4.3	$dpQ_{\rm IV}$	1 0 0 0 0 0 0 0 0 0 0 0 0 0				Crushed stone soil, solid clay with fillers up to 30 %;
3	0	5- 6- 7- 8- 9- 10- 11- 12- 13- 14.3 ¹⁴ -	9.6	dpQ _{IV}	$\begin{array}{c} y_{0} \\ y_{0} \\$	1	m	11.4-11.6	Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
4	4	15- 16- 17- 18- 19.0 ₁₉	4.7	dpQ _{IV}	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \\ \end{array} \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ $	2	m	15.5-15.7	Clay soil grayish – brownish, semisolid, crushed stone and gravel content up to 50 %;

			16-	-			2		13.3-13.7	graver content up to 50 %,
		4	- 17-	-	$dpQ_{\rm IV}$					
			18-	-						
-	4		19.0 ₁₉ _	4.7		1.07.07.07.				
			20-	-						Clay soil dark greenish, solid, crushed stone and gravel
			21-	-						content up to 35 %;
			22-	-			•		22.2.22.4	
			23-	-		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	3	m	22.2-22.4	
		3	24-	-	$dpQ_{\rm IV}$					
		9	25-	-		$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $				
			26-	-						
			27-							
			28-	-						
			29-	-						
	5		30.0 ₃₀ _	11.0						

	აბიექტი: პ			230 ლ ი					დანართი 1.5-2
)ject: Bakı			`	ჭაბურღ Borehol	ილი _] e No 2	Nº2		Appendix 1.5-2
r بو	აწყების hitial Date: ამთავრეშ inal Date:	10.12.201 ბის თარ	4 თღი:	1	x=377 Y=461 d=127mr d=108mr d=90mm	18384 n_0.0- n_4.0-	12.0m	Ĕxcavat გრუნ	მუშევრის პირის ნიშნული – tion Level_ 2103.2м ტის წყლის დონე: გამოჩენა –14.0 მ დამყარება – 14.0მ nd water Level: _ Flow level- 14.0м Stable level - 14.0м
	Nº	Job (m)	(9)	lbo	-თ-თ-		ნიმუში Sampliı	ს აღება ng	
	საინჟინრო-გ რი ელემენტ Engineering (Elements	შრის საგების განლაგების სიღრმე, (მ) Depth of Basement Layer (m)	შრის სიმძლავრე, (მ) Layer Thick (m)	გეოლოგი"ერი ინდექსი Geological Index	გამონამუშევრის ლითო- ლოგიური ჭრილი Lithological Section of Excavation	նօმ"ց ⁻ შօს ნომერი Sample Number	ნიმუშის სახეობა Sample Type	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil
-	1 0	0.4	0.4	adQ _{IV}					Soil layer – clay soil brown, with gravel content up to 15% and plant roots up / to 35%.
	Ø	1- 2- 3- 4-		dpQ _{IV}					Crushed stone soil, solid clay with fillers up to 30 %;
2	2	4.5	4.1		· · · · · · · · · · · · · · · · · · ·				Clay soil brown, semisolid,
	2	6- 7- 7.8	3.3	$dpQ_{\rm IV}$					crushed stone and gravel content up to 40 %;
	4 8	8- - 9.1 9_	1.3	$dpQ_{\rm IV}$					Crushed stone
	Ø	10- 11- 12- 13- 14.0 ₁₄	4.9	dpQ _{IV}					Crushed stone soil, solid clay with fillers up to 30 %;
	2	14.0 ₁₄ 15- 16- 17.0 ₁₇	3.0	dpQ _{IV}	0 0 0 0 0 0 0 0 0 0 0 0 0 0	1	m	16.0-16.5	Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
	,							10.0.10.5	Clay soil dark greenish, solid, crushed stone and gravel content up to 35 %;
		-	1	1	L_/I/T'_/T'_/'	່ ົ	m	19.0-19.5	

	6		17.0 ₁₇	3.0						
						$ \begin{array}{c} \begin{array}{c} & & \\$				Clay soil dark greenish, solid, crushed stone and gravel content up to 35 %;
			19–			$ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	2	m	19.0-19.5	
			20-				2			
			21-			$ \begin{array}{c} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ & \\ $				
			22-							
		3	23-							
			24-		$\text{dpQ}_{\rm IV}$					
			25-							
			26-							
			27-							
			28– - 29–				3	m	28.5-29.0	
	7			13.0						
L					1	I I				

	ბიექტი: პ ject: Bakı			ველი	ჭაბურღ Borehol	ილი e No 3	Nº3		დანართი 1.5-3 Appendix 1.5-3
In ୧	აწყების itial Date: ამთავრეპ nal Date:	10.12.2014 ნის თარ	4 ගලი: 11	1.12.2014	d=00mm	18405.8 _ 0.0-3	8.0m	Ēxcav გრუნ	ამუშევრის პირის ნიშნული – მ ation Level_ м ტის წყლის დონე: გამოჩენა –15.3 მ დამყარება – 15.0მ nd water Level: _ Flow level- 15.3м Stable level - 15.0м
	N⁰	ob (m)	(9)	სი	-000-		ნიმუში Samplii	ს აღება na	
NoNo	ເນລາຍ ທຸດ ງານງາງຍາຍ Engineering Geological Elements	შრის საგების განლაგების სიღრმე, (მ) , Depth of Basement Layer (m)	შრის სიმძლავრე, (Layer Thick (m)	გეოლოგიური ინდექსი GeologicalIndex	გამონამუშევრის ლითო ლოგიური ჭრილი Lithological Section of Excavation	ճօժუშის ნომერი Sample Number	လို	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil
_1		0.3	0.3	adQ _{IV}					Soil layer – clay soil brown, with gravel content up to 15% and plant roots up
2		1- 2- 3- 4.2 4-	3.9	dpQ _{IV}	20 20 20 20 20 20 20 20 20 20 20 20 20 2				Crushed stone soil, solid clay with fillers up to 30 %;
3	8	5.0 ₅ _	0.8	$\text{dp}\text{Q}_{\text{IV}}$	POAD OA				Crushed stone
	4	5.0 5 6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18- 18-		dpQ _{IV}		1	m	9.6-9.8	Clay soil grayish – brownish, semisolid, crushed stone and gravel content up to 50 %;
		19-							

4		17- 18- 19- 20- 21- 22- 23- 24.224-	19.2		$\begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} $	2	m	20.0-20.2	
5	3	25- 26- 27- 28- 29- 30.0 ₃₀	10.8	dpQ _{IV}	$\begin{array}{c} \begin{array}{c} U \\ \cdot \\$	3	m	27.2-27.4	Clay soil dark greenish, solid, crushed stone and gravel content up to 35 %;

Participant usefunger Initial Date: 31.22014 d=90mm		ობიექტი: ბაკურიანი-დიდველი Oject: Bakuriani-Didveli ჭაბურდილი №4 Borehole No 4												
Ne upper description upper de	lni ହୁଧ	tial Date: ამთავრეპ	13.12.2014 ბის თარ	4 10ლი:		Y=461 	18308 0.0-3.0		Ĕxcava გრუნც	tion Level_ 2131.4м ტის წყლის დონე: გამოჩენა – დამყარება – nd water Level: _ Flow level -				
1 0 0.3 adQ ₁ 2777777777777777777777777777777777777							f	ნიმუში						
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	oNeN	საინჟინრო-ຈ,ჟოლოგ ოე- რი კლემენტი (სგე) Engineering Geological Elements	შრის სავების განლაგები სიღრმე, (მ) , Depth of Basement Layer (n	შრის სიმძლავრე, (მ Layer Thick (m)	გეოლოგიური ინდექს Geological Index	രംദിന6ംദിഎന്നുന്നിം ഇറത ഇനുറൗന്റെ ക്രറ്നെ Lithological Section of Excavation				Description of Soil				
$ \begin{array}{ c c c c c } \hline \hline$		0	-	-						to 35 %.				
3 -			2- 3- 4-	-		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				Crushed stone soil, solid clay				
$\frac{\sqrt{6}\sqrt{6}\sqrt{6}\sqrt{6}}{2}$ = 10.5.19.7 Clay soil gravish – brownish	4	6	6- 7- 8- 9- 10- 11- 12- 13- 14- 15- 16- 17- 18-	14.6	dpQ _{IV}		1	m		solid, gravel content up to 40 % and 0.2-0.5m thickness gravel interlayers with clay soil I filler (percentage correlation in section 75 % - 25%);				

		17-	-						
		- 18 -	-						
4		19.1 ₁₉₋	14.6		~ ~ ~ ~ ~ ~				
	4	20-	-	dpQ _{IV}) , n , n , n , n , n , n , n , n	2	m	19.5-19.7	Clay soil grayish – brownish, semisolid, crushed stone and gravel content up to 50 %;
5		21- 21.8 ⁻	2.7						
6	5	22- 23- 23.8	2.0	$\text{dp} Q_{\rm IV}$					Clay soil brownish-grayish, semisolid, gravel content up to 40 % and 0.2-0.5m thickness gravel interlayers with clay soil I filler (percentage correlation in section 75 % - 25%);
		24-	-						Clay soil grayish – brownish, semisolid, crushed stone and gravel content up to 50 %;
	4	26-	-	dpQ _{IV}		3	m	25.6-25.8	
7		- 27.227-	3.4						Clay soil brownish-grayish, semisolid, gravel content up to 40 % and 0.2-0.5m
8	5	- 28.228-	1.0	$\text{dp}\textbf{Q}_{\rm IV}$		4	m	27.5-27.7	thickness gravel interlayers with clay soil I filler (percentage correlation in section 75 % - 25%);
	4	- 29-		dpQ _{IV}					Clay soil grayish – brownish, semisolid, crushed stone and gravel content up to 50 %;
9		30.0 ₃₀ _	1.8		<i>₹/n₽/n₽/r</i>				

	იექტი: პ ect: Bakı			<u>ვე</u> ლი	ჭაბურღ Borehol		Nº5		დანართი 1.5-5 Appendix 1.5-5
Init და	აწყების tial Date: ამთავრეპ	: 14.12.20 ბის თარ	14 റെഇറ:		x=377 Y=461 d=90mm d=76mm	18250 _ 0.0-3		Ēxcav გრუნ	ამუშეერის პირის ნიშნული –2134.8მ ation Level_ 2134.8м ტის წყლის დონე: გამოჩენა – დამყარება – nd water Level: _ Flow level - Stable level -
	nal Date: №			<u> </u>	-6			ს აღება	
٥NaN	საინჟინრო-გუოლოგიუ- რი გლემენტი (სგე) Engineering Geological Elements	შრის საგების განლაგების სიღრმე, (მ) Depth of Basement Layer (m)	შრის სიმძლავრე, (მ) Layer Thick (m)	გეოლოგიური ინდექსი Geological Index	გამონამუშევრის ლითო- ლოგიური ჭრილი Lithological Section of Excavation	ລູວຢິຕອິວຢິງ ຢິງສູທິດໄ,		ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil ∕Soil layer – clay soil brown, with gravel
1	<u>осшш</u> О	0.3	0.3	adQ _{IV}	<u></u>				/ content up to 15% and plant roots up to 35 %.
2	Ø	1.0 1- 2- 3- 4- 4.9 5-	4.6	dpQ _{IV}					Crushed stone soil, solid clay with fillers up to 30 %;
3	6	6- 7- 8.0	3.1	$dpQ_{\rm IV}$		1	m	6.0-6.2	Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);
4	2	9.0	1.0	dpQ_{IV}		2	m	8.1-8.3	Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
5	6	9 	3.7	dpQ _{IV}					Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);
	2	13-		$\text{dp}\text{Q}_{\rm IV}$	12/2/2/2/2/ 3/2/2/2/2/ 10/2/0/2/0/				Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
6	5	13.9 14- 15- 16- 17- 18-	-	dpQ _{IV}	1 1 1 1 1 p' p' p' p' 1 p' p' p' 0 0 0 1 p' p' 0 0 0 0 0 0 1 p' p' 0 0 0 1 p' p' 0 0 0	3	m	15.1-15.3	Clay soil brownish-grayish, semi- solid, gravel content up to 40 % and 0.2-0.5m thickness gravel interlayers with clay soil I filler (percentage correlation in section 75 % - 25%);
		- 19-							

	5	17-	-					
7		19- 20- 20.8	6.9					
8	2	21- 22.2 22-	1.4	$\text{dp}\text{Q}_{\rm IV}$				Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
9	6	23- 24- 25- 26- 27.5 ²⁷⁻	5.3	$dpQ_{\rm IV}$				Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);
1(0	28- 29.0 ₂₉	-	dpQ _{IV}	4	m	28.0-28.2	Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
11	6	30.0 ₃₀ _	1.0	$dpQ_{\rm IV}$				Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);

	იექტი: პ ect: Bakı			<u>ვე</u> ლი	ჭაბურღ Borehol		Nº5		დანართი 1.5-5 Appendix 1.5-5
Init და	აწყების tial Date: მთავრეშ	14.12.20 ხის თარ	14 റെന്നാ:		x=377 Y=467 d=90mm d=76mm	18250 _ 0.0-3		Ēxcav გრუნ	ამუშეერის პირის ნიშნული –2134.8მ ation Level_ 2134.8M ტის წყლის დონე: გამოჩენა – დამყარება – nd water Level: _ Flow level - Stable level -
	nal Date: №				- (2)			ს აღება	
NºN	საინჟინრო-გეოლოგიუ- რი გლემენტი (სგე) Engineering Geological Elements	შრის საგების განლაგების სიღრმე, (მ) Depth of Basement Layer (m)	შრის სიმძლავრე, (მ) Layer Thick (m)	გეოლოგიური ინდექსი Geological Index	പ്രക്കാര്ത്തുത്തി. ഇറത്ത- ഈറ്റരൗത്ത ദൃത്തെര Lithological Section of Excavation	նօმუშის ნომერი Sample Number	ნიმუშის სახეობა <mark>gu</mark> Sample Type	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil ∕Soil layer – clay soil brown, with gravel
1	лешш Ф	0.3	0.3	adQ _{IV}	<u></u>				/ content up to 15% and plant roots up to 35 %.
2	Ø	1.0 1- 2- 3- 4- 4.9 5-	4.6	dpQ _{IV}					Crushed stone soil, solid clay with fillers up to 30 %;
3	6	6- 7- 8.0	3.1	$dp Q_{\rm IV}$		1	m	6.0-6.2	Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);
4	2	9.0	1.0	dpQ_{IV}		2	m	8.1-8.3	Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
5	6		3.7	dpQ _{IV}					Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);
	2	13-		$dpQ_{\rm IV}$	12/2/2/2/1/2/ 3/2/2/20/2/ 10/2/0/2/0/				Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
6	5	13.9 14- 15- 16- 17- 18-	-	dpQ _{IV}	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1	3	m	15.1-15.3	Clay soil brownish-grayish, semi- solid, gravel content up to 40 % and 0.2-0.5m thickness gravel interlayers with clay soil I filler (percentage correlation in section 75 % - 25%);
		- 19-	-						

	5	17-	-					
7		19- 20- 20.8	6.9					
8	2	21- 22.2 22-	1.4	$\text{dp}\text{Q}_{\rm IV}$				Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
9	6	23- 24- 25- 26- 27.5 ²⁷⁻	5.3	$dpQ_{\rm IV}$				Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);
1(0	28- 29.0 ₂₉	-	dpQ _{IV}	4	m	28.0-28.2	Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;
11	6	30.0 ₃₀ _	1.0	$dpQ_{\rm IV}$				Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);

დანართი/ Appendix 1.6-1 შურფი №1 TP No1 ობიექტი: ბაკურიანი-დიდველი Oject:Bakuriani-Didveli გამონამუშევრის პირის ნიშნული – Excavation Level - 2125.8m დაწყების თარიღი: დამთავრების თარიღი: გრუნტის წყლის დონე: გამოჩენა – მ დამყარება – მ X=377509 Initial Date: Ground water Level: -Y=4618292 Final Date: ნიმუშის აღება Depth of Basement Layer (m) № შრის საგების განლაგების გამონამუშევრის ლითო-Sampling გეოლოგიური ინდექსი Geological Index საინჟინრო-გეოლოგიური კლემენტი (სგე) Engineering Geological Elements Lithological Section of Excavation შრის სიმძლავრე, (მ) Layer Thick (m) ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m) ლოგიური ჭრილი გრუნტის აღწერა ნიმუშის სახეობა ნიმუშის ნომერი №N Sample Number Description of Soil Sample Type სიღრმე, 1 1 0.3 0.3 Soil layer - clay soil brown, with gravel content up to 15% and plant roots up/ 1 to 35 %. 1.0-1.5 1 Crushed stone soil, solid clay 2 \bigcirc 2.0-2.5 with fillers up to 30 %; 2 3 4 3 4.5-5.0 2 5.0 4.7 5

									დანართი Appendix 1.6-2
	იექტი: ct:Bakuria	ani-Didve	li		შურფი TP No				
									მუშევრის პირის ნიშნული – tion Level – 2128.8 m
დან Initi	შყების თა მთავრები ial Date: al Date:	არიღი: ა თარიღი	:		X=377531 Y=4618284			გრუნტ Ground	ის წყლის დონე: გამოჩენა – მ დამყარება – მ I water Level: –
	$N^{\underline{\circ}}$	չյծսն er (m)		03	-600	ба	ამუშის Samp	ადება oling	
$N_{\bar{o}}N_{\bar{o}}$	საინჟინრო-გეოლოგიური ელემენტი (სგე) Engineering Geological Elements	შრის საგების განლაგების სიღრმე, (მ) Depth of Basement Layer (m)	შრის სიმძლავრე, (მ) Layer Thick (m)	გეოლოგიური ინღექსი Geological Index	გამონამუშევრის ლითო- ლოგიური ჭრილი Lithological Section of Excavation	ნიმუშის ნომერი Sample Number	ნიმუშის სახეობა Sample Type	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის_აღწერა Description of Soil
1	0	0.4	0.4		<u> //æ//æ//</u>				Soil layer - clay soil brown, with grave
	Ø	1			20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	4		1.0-1.5	content up to 15% and plant roots up to 35 %. Crushed stone soil, solid clay with fillers up to 30 %;
2		3 - - 4 - 5.0 5	4.6			5		3.0-3.5	

		კურიანი- ani-Didve		0	შურფი TP No	№3 3			დანართი Appendix 1.6-3
დამ Initi	∛ყების თა მთავრები al Date: al Date:	არიღი: ს თარიღი	:		X=377659 Y=461829			Ēxcavat გრუნტ	მუშევრის პირის ნიშნული – tion Level – 2112m ის წყლის დონე: გამოჩენა – მ დამყარება – მ I water Level: –
	N⁰	ების er (m)		ç	-000	бс	მუშის Samp	აღება bling	
N₂N₂	საინჟინრო-გეოლოგიური ელემენტი (სჯე) Engineering Geological Elements	შრის საგების განლაგების სიღრმე, (მ) Depth of Basement Layer (m)	შრის სიმძლავრე, (მ) Layer Thick (m)	გეოლოგიური ინდექსი Geological Index	രാർന6ാദീനീന്നൻ ഇറതന- ഇനുറന്നർ ഉത്രഇര Lithological Section of Excavation	ნიმუშის ნომერი Sample Number	ნიმუშის სახეობა Sample Type	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil
1	0	0.4	0.4						Soil layer - clay soil brown, with gravel content up to 15% and plant roots up
	Ø	1				6		1.0-1.5	Crushed stone soil, solid clay with fillers up to 30 %;
2		3 - 4 - 5.0 5	4.6			7		3.0-3.5	

დანართი Appendix 1.6-4 შურფი №4 TP No 4 ობიექტი: ბაკურიანი-დიდველი Oject:Bakuriani-Didveli გამონამუშევრის პირის ნიშნული – Excavation Level - 2104m დაწყების თარიღი: დამთავრების თარიღი: გრუნტის წყლის დონე: გამოჩენა – მ დამყარება – მ X=377638 Initial Date: Ground water Level: -Y=4618384 Final Date: ნიმუშის აღება Depth of Basement Layer (m) № შრის საგების განლაგების სიღრმე, (მ) გამონამუშევრის ლითო-Sampling გეოლოგიური ინდექსი Geological Index საინჟინრო-გუოლოგიური ვლემენტი (სგე) Engineering Geological Elements -ithological Section of შრის სიმძლავრე, (მ) Layer Thick (m) ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m) പ്പാത გრუნტის აღწერა ნიმუშის სახეობა ნიმუშის ნომერი Sample Number °Ζ⁰Ζ Description of Soil ლოგიური ჭ Sample Type Excavation 1 0.4 0.4 //₹// 1 <u>چ</u>// Soil layer - clay soil brown, with gravel ₹/ content up to 15% and plant roots up $\overline{}$ 1 to 35 %. 1.0-1.5 8 Crushed stone soil, solid clay 2 \bigcirc with fillers up to 30 %; 3 9 3.0-3.5 4 2 4.6 5.0

დანართი

								დახართი Appendix 1.6-5
			D	0 0				
წყების თა მთავრები ial Date: al Date:	არიღი: ა თარიღი	:		X=377582 Y=4618379			Ĕxcavatic გრუნტ	ეშევრის პირის ნიშნული – on Level – 2102.4m ის წყლის დონე: გამოჩენა – მ დამყარება – მ ! water Level: –
Nº	յծօს er (m)		ç	-wa	ба			
საინჟინრო-გეოლოგიური კლემენტი (სჯე) Engineering Geological Elements	შრის საგების განლაგ. სიღრმე, (მ) Depth of Basement Laye	შრის სიმბლავრე, (მ) Layer Thick (m)	გეოლოგიური ინდექს Geological Index		ნიმუშის ნომერი Sample Number	ნიმუშის სახეობა Sample Type	ნიმუშის აღების ინტერვალი, (მ) Sampling Depth (m)	გრუნტის აღწერა Description of Soil
	0.4	0.4						ნიადაგის ფენა–თიხნარი ყავისფერი. სრეშითა და ხვინჭით 15%-მდე და მცენარეთა ფესვებით 35%-მდე
	2 -				10		1.0-1.5	ლორღნარი, მაგარი თიხნარი შემავსეპლით 30%-მდე
Ø	3 – 4 – 5.0 5	4.6			11		3.0-3.5	
	Lison6 ຫຼາຍຄົດທາວ, ສາຫາຊາຫາດ ທາງ ແລະ (ປາ ທາງ ທາງ ທາງ ທາງ ທາງ ທາງ ທາງ ທາງ ທາງ ທາ	ct:Bakuriani-Didve ^ທ ູ່ຢູ່ງວັດໄມ ຫຣັດດອຸດ ial Date: al Date: al Date: brockedg, (by) brockedg, (by) brockedg, (g) 0.4 (f) 0	Ct:Bakuriani-Didveli ⁷ ເປັນ ⁷ (1) ⁷	¹ λουδιαρίος ¹ λουδιαρίος ¹ μουδιαρίος ¹ μουδιασία ¹ μουδιαρίος ¹ μουδιαρίος ¹ μουδιαρίος ¹ μουδιασία ¹ μουδιαρίος ¹ μουδιαρία ¹ μουδιαριο μουδιαρία ¹ μουδιαρία	Production The No Production Production Production	Ct:Bakuriani-Didveli X=377582 Y=4618379 X=377582 Y=4618379 X=377582 Y=4618379 Y=4618379 Y=4618379 Y=4618379 Y=4618379 Y=4618379 Y=1 Y=4618379 Y=1 Y=4618379 Y=1 Y=4618379 Y=1 Y=4618379 Y=1 Y=4618379 Y=1 Y=1 Y=1 Y=1	mg/dom type TP No 5 TP No 5 TP No 5 TP No 5 TP No 5 The No 5	TP No 5 <

2. Text Appendix

გრუნტების ფიზიკურ-მექანიკური უ-სსი Valu

														Table. V	/alues of th	e Physico	mechanical	Charact	eristics of
							9.				ვებისათვის	i			ომეტრული				
								I	ndices fo	or Proce	ssing			Gra	nulometric	Compositic T	on, %		
											ფერდოპის	ა დრო	-	Clay	Dust	and		პღ	ღასტიკური
			pu		მექ	ანიზმე	პით			ოქებით		ქანოპი				ქദ്വാപ്പ് / Sand	b⁄ကဥ∄ဂ (bვინ≹ა) Gravel		Plasticity
No		ρ	ege		CH	иП-IV-5	5-82	CH	иП-IV-	2-82	ქვაბულის ჩაღრმავებ		ეისმ ^ა ერი 01.01-09 სოილს	თიხა	მტვერი	იშა	br br Gr	÷	M ^b
l I	0	ინდექსი ndex	/ T			-			•		Temporary		სეისმური 36 01.01-09 ყ სოილს	8	9Ô5]		e S	<u>د</u>
Serial	SGE No	ინდ Index	ემბი										ა ს , 36 რყ	3	რაქციათა	ზომები, მ	6 /	ხღვარზე,	ýmð icity
) / S	SG		336	გრუნტების დახასიათება		c			c				ური ვით ეგ ^ო	Di	mensions of	Fractions,	mm		აში Plast
№№ რიგზე/	სგე № /	გეოლოგიური Geological l	პირობითი აღნიშვნები / Legend	Soil Description	სიმკვრივე /Density	യാർഎദ്യാുറ്റംb	კატეგორია Category	სიმკვრივე /Density	യാദീൗദീാദ്യാർob %&ൗഋo Processing Class	კატეგორია Category	3 მ-დე / up to 3 m	5 д-დე/ up to 5 m	გრუნტების კატეგორია სეისმური თვისებების მიხედვით, პნ 01.01-05 შეისმიც ცატეგორყ სოილს	<0.002	0.002-0.0063	0.0063-2.0	2.0-60.0	ტენიანობა დენადობის W _დ M_:	ტენიანობა პლასტიკუროპის ზღვარზე Moisture at the Point of Plasticity,
					kg/m ³		_	kg/m ³		_		_	_	%	%	%	%	~ ~	
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
			//ङ्//ङ्// <u>ङ</u> //	Soil layer – clay soil brown, with gravel content up to 15% and plant															
1	0	adQ_{IV}		roots up to 35 %.	1400	9 ^в	Ι	1400	8 ^B	II	-	-	-	-	-	-	-	-	-
2	2	dpQ _{IV}		Clay soil brown, semisolid, crushed stone and gravel content up to 40 %;	1950	33 ^r	ш	1950	33 ^r	ш	1:0.75	1:1	II	12.4	29.2	22.1	36.3	0.462	0.335
3	3	dpQ _{IV}		Clay soil dark greenish, solid, crushed stone and gravel content up to 35 %;	1950	33 ^r	ш	1950	33 ^г	ш	1:0.75	1:1	Ш	9.7	22.9	26.8	40.6	0.388	0.264
4	4	dpQ _{IV}		Clay soil grayish – brownish, semisolid, crushed stone and gravel content up to 50 %;	1950	33 ^r	III	1950	33 ^r	III	1:0.75	1:1	П	_	_	_	_	_	-
5	5	dpQ _{IV}		Clay soil brownish-grayish, semisolid, gravel content up to 40 % and 0.2-0.5m thickness gravel interlayers with clay soil I filler (percentage correlation in section 75 % - 25%);	<u>1950</u> 1950	<u>33</u> ^r 39 ⁶	Ш	<u>1950</u> 1950	<u>33</u> ^r 39 ⁶	Ш Ш	1:1	1:1	Π	_	-	_	_	_	_
6	6	dpQ _{IV}		Alteration of light and dark brown, semisolid clays (0.1-0.9m) with gravel inclusions up to 40 % and 0.1-0.2 m thickness gravel layers (percentage correlation in section 60% - 40%);	<u>1950</u> 1950	<u>33</u> ^r 39 ⁶	<u>Ш</u> Ш	<u>1950</u> 1950	<u>33</u> ^r 39 ⁶	<u>Ш</u> Ш	1:1	1:1	П	_	-	_	_	_	_
7	Ø	dpQ _{IV}		Crushed stone soil, solid clay with fillers up to 30 %;	1950	39 ⁶	Π	1950	39 ⁶	ш	1:1	1:1	п	3.5	9.7	16.6	70.2	0.339	0.239
8	8	dpQ _{IV}		Crushed stone.	1950	39 ⁶	Π	1950	39 ⁶	ш	1:1	1:1	Ι	-	-	-	_	_	_

0 0 0 0 0 0 0	ებების მაჩვენებლების საანგარიშ	a
ues of the Physicomechanical Characteristics of	e Physicomechanical Characteristics of	of

Image: constraint of the constr	soils											-						
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																		
2 3 5 3 1 2 3 1 2 3 1 <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<>	უბა										o, K _f	c					1	
21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 - <td>პლასტიკურობის რიცხვი, I_p Plasticity Number, I_p</td> <td>გრუნტის ნაწილაკების, _{Ps} Granule, p_s</td> <td>ბუნებრივი მღგომარეობის გრ'ენტის, ρ / Natural Soil, ρ</td> <td>გრუნტის რონჩხის, p_h Soil Skeleton, p_d</td> <td>ტენიანობა, W Moisture, W</td> <td>ფორიანობა, n Void, n</td> <td>ფორიანობის კოეფიციენტი, e Void Ratio, e</td> <td>სრული ტენტევაღობა, W_{sat} Moisture Capacity, W_{sat}</td> <td>ტენიანობის ხარისხი, S_r Moisture Degree, S_r</td> <td>დენადობის მაჩვენებელი, I_$_{ m I}$ Yield Indices, I $_{ m L}$</td> <td>ფილტრაციის კოეფიციენტ Filtration Ratio, K _f</td> <td>საერთო</td> <td>შინაგანი ხახუნის კუთხე,</td> <td>შეჭიდულობა / Friction, C</td> <td>გრუნტის საანგარიშო წინააღმღეგობა, Rე</td> <td>წინააღმდეგობა ერთღერძა კუმშვაზე, R_c</td> <td>യാൽർറയ്യുർരിപ്പാന്വാന്തരുന്നെ K_{sof} Softening Ratio, K_{sof}</td> <td>dj6o∂36> / Note</td>	პლასტიკურობის რიცხვი, I _p Plasticity Number, I _p	გრუნტის ნაწილაკების, _{Ps} Granule, p _s	ბუნებრივი მღგომარეობის გრ'ენტის, ρ / Natural Soil, ρ	გრუნტის რონჩხის, p _h Soil Skeleton, p _d	ტენიანობა, W Moisture, W	ფორიანობა, n Void, n	ფორიანობის კოეფიციენტი, e Void Ratio, e	სრული ტენტევაღობა, W _{sat} Moisture Capacity, W _{sat}	ტენიანობის ხარისხი, S _r Moisture Degree, S _r	დენადობის მაჩვენებელი, I_ $_{ m I}$ Yield Indices, I $_{ m L}$	ფილტრაციის კოეფიციენტ Filtration Ratio, K _f	საერთო	შინაგანი ხახუნის კუთხე,	შეჭიდულობა / Friction, C	გრუნტის საანგარიშო წინააღმღეგობა, R ე	წინააღმდეგობა ერთღერძა კუმშვაზე, R _c	യാൽർറയ്യുർരിപ്പാന്വാന്തരുന്നെ K _{sof} Softening Ratio, K _{sof}	dj6o∂36> / Note
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	%	g/cm ³	g/cm ³	g/cm ³	_	_	_	_	_	_	m/day	10 ⁵ pa	grad.	10 ⁵ pa	10⁵pa	10 ⁵ pa	_	
- -	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	
12.7 2.69 199 1.66 $\frac{0.202}{0.362}$ 0.383 0.620 0.231 0.87 0.21 0.007 210 $\frac{20.6}{23.7}$ $\frac{0.19}{0.29}$ 2.4 - - 2. Values of characteristics given in fraction or denominator - normative values and in nume values; 12.4 2.70 2.03 1.71 $\frac{0.189}{0.257}$ 0.367 0.579 0.214 0.88 -0.06 0.018 240 $\frac{21.6}{24.8}$ $\frac{0.24}{0.36}$ 2.7 - <t< td=""><td>_</td><td>-</td><td>-</td><td>-</td><td>_</td><td>-</td><td>-</td><td>-</td><td>_</td><td>-</td><td>_</td><td>_</td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td><td>special literature were used in order to determ calculation values of engineering-geological ele</td></t<>	_	-	-	-	_	-	-	-	_	-	_	_	-	-	-	-	-	special literature were used in order to determ calculation values of engineering-geological ele
12.4 2.70 2.03 1.71 $0.189 \\ 0.257$ 0.367 0.579 0.214 0.88 -0.06 0.018 240 $\frac{21.6}{24.8}$ 0.36 2.7 - - characteristics values for EGE 7 and their value brackets. Calculation values are determined of probability \mathbb{B} = 0.95. -	12.7	2.69	1.99	1.66		0.383	0.620	0.231	0.87	0.21	0.027	210	<u>20.6</u> 23.7		2.4	_	_	2. Values of characteristics given in fraction co denominator – normative values and in numer
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	12.4	2.70	2.03	1.71		0.367	0.579	0.214	0.88	-0.06	0.018	240			2.7	_	-	3. Laboratorial researches were carried out to characteristics values for EGE 7 and their value brackets. Calculation values are determined det
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	_	_	_	_	_	_	_	_	_	_	0.045	270			2.8	_	-	4. Values in moisture column for Engineering-02 and 3 are given in fraction: the numerator sh
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	-	-	-	_	_	-	-	_	_	0.06-0.20	280			2.9	_	-	according to which floating value was determi 5. Values of mechanical properties for enginee elements 42 6 are accepted in accordance to through calculation of average weighted value
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	_	-	-	_	_	_	-	_	_	_	0.5-1.5	310	31.4	0.25	3.2	_	_	
	10.0	2.61	1.83	1.6	0.144	0.387	0.631	0.242	0.60	-0.95		460	(<u>33.2)</u> 430	<u>(0.04)</u> 0.19	4.5	_	_	
	_	-	-	-	_	-	-	-	-	-	80-100	570			6	-	-	

ა მნიშვნელობების ცხრილი

soils

recommendation of rmine normative and elements physical-

correspond in erator – calculation

to determine shift ues are given in during reliability

g-Geological Elements shows the common hibits <2 fraction value nined. eering-geological

o their description, ues.

Table for outcomes of laboratorial researches of soils filtration characteristics

Object description: BAKURIANI

Nº Nº	3	mple Takin Places	ng					Granu	lometric o	compositi	on, %	(Fracti	ion size in 1	mm)				Plasticit	у
	Pit – hole	Depth m,		Laboratorial №	РН	>10	10-5	5-2	2-1	1-0.5	0.5-0.25	0.25-0.10	0.10-0.05	0.05-0.010	0.010-0.005	<0.005	Upper limit W _L	Lower limit W _p	Plasticity number I _P
1	1	1.0-1.	5	166															
2	1	2.0-2.	5	167			Each sample is dark gray clay soils with gravel a							l and cru	shed stor	nes inclu	isions		
3	1	4.0-4.	5	168					1										
4	2	16.0-16	5.5	169															
5	2	19.0-19	9.5	170															
N⁰									Table	continua				Reduct	ion, %	Soak	ing, %		
N_{2}		W ¹		Soil	Density of)ne	x I _L	ure	atior		ient		1011, 70	Down	g, , , ,	es I	
		Natural Moisture One Part	Mineral. Part P _s		Natural Soil P	Skeleton Pd	Porosity, n, %	Porosity ration One part	Consistensy Index One Part	Complete Moisture Capacity W _n One Part	Water saturation ration G,	One part	Filtration coefficient K ₁₀ m/24 h	Water reducing value	Water reduction limit moisture	Water soaking value	Maximum soaking moisture	Organic admixtures om One Part	Soaking rate
1		0.198	2.7	1	1.79	1.49	45.02	0.818		0.302	0.6	65	0.054						
2		0.198	2.7	1	1.79	1.49	45.02	0.818		0.302	0.0	65	0.054						
3		0.277	2.7	1	1.75	1.37	49.45	0.978		0.361	.361 0.77		0.11						
4		0.296	2.7	1	1.76	1.36	49.82	0.993		0.366	0.366 0.81		0.13						
5		0.231	2.6)	2.04	1.66	38.30	0.620		0.231	1.	0	0.027						
		0.214	2.70)	2.14	1.71	36.70 0.579 0.2		0.214	1.	0	0.018							

JSC "Saktskalproekti" Geotechnical Laboratory

Laboratory Manager: V. Ivanovi

დანართი/appendix 2.6

Statistical Interpretation of Mechanical Data.

++			it	No. of	Samples	Square on s _{n-1}	ient of on, V	Value, A ⁿ	Cal	culated Va	alue
#	Mechanical Charact	eristics	Unit	Initial	Final	Average Sq Deviation	Coefficient Variation, 1	Reference	a=0.85	a=0.95	a=0.99
1	Cohesion, C	Cohesion, C Natural Moisture Content				0.068	0.400	0.17	0.09	0.04	-0.03
2	Internal friction angle, ϕ	Degree	9	9	0.031	0.044	35.56	34.21	33.25	31.84	